47,118 research outputs found

    Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism

    Get PDF
    Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses

    Algebraic approach to the Hulthen potential

    Full text link
    In this paper the energy eigenvalues and the corresponding eigenfunctions are calculated for Hulthen potential. Then we obtain the ladder operators and show that these operators satisfy SU(2) commutation relation.Comment: 8 Pages, 1 Tabl

    A Dual Digital Signal Processor VME Board For Instrumentation And Control Applications

    Full text link
    A Dual Digital Signal Processing VME Board was developed for the Continuous Electron Beam Accelerator Facility (CEBAF) Beam Current Monitor (BCM) system at Jefferson Lab. It is a versatile general-purpose digital signal processing board using an open architecture, which allows for adaptation to various applications. The base design uses two independent Texas Instrument (TI) TMS320C6711, which are 900 MFLOPS floating-point digital signal processors (DSP). Applications that require a fixed point DSP can be implemented by replacing the baseline DSP with the pin-for-pin compatible TMS320C6211. The design can be manufactured with a reduced chip set without redesigning the printed circuit board. For example it can be implemented as a single-channel DSP with no analog I/O.Comment: 3 PDF page

    Critical domain-wall dynamics of model B

    Full text link
    With Monte Carlo methods, we simulate the critical domain-wall dynamics of model B, taking the two-dimensional Ising model as an example. In the macroscopic short-time regime, a dynamic scaling form is revealed. Due to the existence of the quasi-random walkers, the magnetization shows intrinsic dependence on the lattice size LL. A new exponent which governs the LL-dependence of the magnetization is measured to be σ=0.243(8)\sigma=0.243(8).Comment: 10pages, 4 figure

    Effects of a mixed vector-scalar kink-like potential for spinless particles in two-dimensional spacetime

    Full text link
    The intrinsically relativistic problem of spinless particles subject to a general mixing of vector and scalar kink-like potentials (∌tanh,Îłx\sim \mathrm{tanh} ,\gamma x) is investigated. The problem is mapped into the exactly solvable Surm-Liouville problem with the Rosen-Morse potential and exact bounded solutions for particles and antiparticles are found. The behaviour of the spectrum is discussed in some detail. An apparent paradox concerning the uncertainty principle is solved by recurring to the concept of effective Compton wavelength.Comment: 13 pages, 4 figure

    Intrinsic Cavity QED and Emergent Quasi-Normal Modes for Single Photon

    Full text link
    We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semi-transparent mirror for single photon transports such that quasi-normal modes (QNM's) emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasi-bound states in the waveguide continuum. Solid state implementations based on a dc-SQUID circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.Comment: 4 pages,5 figures, Comments welcom

    Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets

    Full text link
    Based on the Hamiltonian equation of motion of the ϕ4\phi^4 theory with quenched disorder, we investigate the depinning phase transition of the domain-wall motion in two-dimensional magnets. With the short-time dynamic approach, we numerically determine the transition field, and the static and dynamic critical exponents. The results show that the fundamental Hamiltonian equation of motion belongs to a universality class very different from those effective equations of motion.Comment: 6 pages, 7 figures, have been accept by EP

    SU(1,1)SU(1,1) and SU(2)SU(2) Perelomov number coherent states: algebraic approach for general systems

    Full text link
    We study some properties of the SU(1,1)SU(1,1) Perelomov number coherent states. The Schr\"odinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K0K_0 of the su(1,1)su(1,1) Lie algebra. Analogous results for the SU(2)SU(2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator
    • 

    corecore